Journal of Archaeological Science 40 (2013) 3963—3976

journal homepage: http://www.elsevier.com/locate/jas

Contents lists available at SciVerse ScienceDirect

Journal of Archaeological Science

New models of North West European Holocene palaeogeography and

inundation™

Fraser Sturt®*, Duncan Garrow , Sarah Bradley ¢

2 Archaeology, University of Southampton, Southampton SO17 1BF, UK

@ CrossMark

b Archaeology, Classics and Egyptology, University of Liverpool, Hartley Building, Brownlow Street, Liverpool L69 3GS, UK

€ British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 9ET, UK

ARTICLE INFO ABSTRACT

Article history:

Received 16 November 2012
Received in revised form

9 May 2013

Accepted 14 May 2013

Keywords:

Holocene palaeogeography
Sea-level change

GIA modeling
Doggerland
Environmental change
Mesolithic

Neolithic

Bronze Age

Iron Age

Maritime archaeology

This paper presents new 500 year interval palaeogeographic models for Britain, Ireland and the North
West French coast from 11000 cal. BP to present. These models are used to calculate the varying rates of
inundation for different geographical zones over the study period. This allows for consideration of the
differential impact that Holocene sea-level rise had across space and time, and on past societies. In turn,
consideration of the limitations of the models helps to foreground profitable areas for future research.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we present, and make available in an interactive
format, new high-resolution (500 year interval), palaesogeographic
models for Britain, Ireland and the broader area shown in Fig. 1
from 11,000 BP to present day. In addition, we use these data to
address the longstanding call (Reid, 1913, 10; Clark, 1936; Coles,
1998, 45; Leary, 2009, 227; Van de Noort, 2011) for more detailed
consideration of the extent, timing and significance of landscape
transformation over the Holocene. In so doing we demonstrate the
variable histories of change across the North West European con-
tinental shelf, and the impact that scale of analysis has upon
interpretation.

The archaeological significance of the changing palae-
ogeography of Europe has long been established, since Reid’s (1913)
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work on submerged forests. There, and in subsequent publications
by a range of scholars (Clark, 1936; Coles, 1998, 1999; Gaffney et al.,
2007), maps of the changing shape of land and sea boundaries have
proven pivotal to discussion of prehistoric activity and social con-
nectivity. These outputs have been used to demonstrate the size of
past habitable landscapes now submerged offshore, and to allow
perspective to be gained on the impact such changes may have had
on past communities.

This paper utilises a recent Glacial Isostatic Adjustment (GIA)
model (Bradley et al., 2011) and data from bathymetric surveys, to
generate new high temporal and spatial resolution reconstructions.
In turn, these outputs are queried to allow for quantification of
variable rates and extents of inundation over the study area. This
helps progress discussion as to both the changing shape of North
West Europe over the Holocene, and the possible significance of
those changes for people in the past.

2. The palaeogeography of North West Europe: a history of
research

The presence, implications and archaeological potential of
submerged landscapes in North West Europe have long been
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known. Reid’s (1913) pioneering work on the submerged forests
and offshore peats surrounding Britain not only led to one of the
first palaeogeographic reconstructions of the North Sea basin as
terrestrial space (1913, 40), but also gave a clear call for more
detailed work on this topic in future. The recovery of a Mesolithic
antler harpoon from the Leman and Ower banks in 1931 led Clark
and Godwin (1956) to build on Reid’s work, investigating the
submerged deposits of the North Sea for themselves. For Clark
(1936) this saw a transformation of the North Sea plain from a
marine environment into an undervalued and under-investigated
submerged terrestrial landscape.

However, as Coles (1998, 48) notes, following this early devel-
opment of interest, the North Sea Plain receded from archaeological
view. It became at best a hypothetical bridge between Britain and
the continent. Thus, while Jacobi (1976) saw the North Sea as land
in the Mesolithic, little weight was given to that space beyond being
a corridor for past movement. In this context, Louwe Kooijmans’
pioneering (1971) documentation of faunal material recovered
from the Brown Bank failed to receive the attention it deserved in
mainstream archaeological discourse. However, while archaeology
may have shifted its focus away from this topic, great advances
were made in the Earth Sciences. In particular Jelgersma’s (1979)
work in the North Sea helped to communicate the extent and
rate of change via new relative sea-level curves. This work would
prove fundamental to later developments, establishing a crucial
baseline from which archaeologists could work.

It was not until the 1990s that publications by Wymer and
Robins (1994) and Coles (1998, 1999, 2000) helped to re-establish
the significance of understanding the changing shape of North-
west Europe within the context of British and Irish archaeology.
Critically, Coles (1998, 45) made clear that our approach to this
topic should move beyond seeing submerged spaces as bridges, but
instead view them as once inhabited landscapes. Concomitant with
this was an appreciation of the fact that palaeogeographic change
did not occur in a social or physical vacuum. As such, Coles (1998,
77) pushed researchers to attempt to grapple with the specifics of
the rate, nature and social impact of sea-level change.

The degree to which this space could be accurately described
accelerated through the late twentieth and early twenty first cen-
tury. Improvements in computer power and software aided the
construction of graphical outputs combining different data sets.
This saw the creation by Shennan et al. (2000) of some of the most
heavily reproduced palaeogeographic maps for the UK. Here data
from regional relative sea level (RSL) curves were integrated to
generate time slice maps at 1000 year intervals. Subsequent work
(Shennan and Horton, 2002; Brooks et al., 2011) served to further
refine this understanding through integrating new relative sea-
level data and outputs from Glacial Isostatic Adjustment models.

Over the same period, pioneering use of 3D seismic data for
offshore landscape reconstruction by Gaffney et al. (2007), (Gaffney
and Fitch, 2009) helped demonstrate and map the survival of sub-
merged Holocene landscape features. In addition, increased marine
development in the UK led to large-scale review of offshore data
(Ward et al., 2006; Selby, 2009; Tappin et al., 2011), helping to bind
together geophysical and geotechnical renderings of the offshore
zone. Work across the European North Sea coastline (Peeters et al.
2009; Hijma et al. 2011) continued to demonstrate recovery of
Palaeolithic and Mesolithic material from both the Brown and
Dogger Banks, but with additional large amounts of in situ material
recovered from buried strata closer to the Dutch coast (Weerts et al.,
2012). In the UK, finds from the submerged Mesolithic site at
Bouldnor Cliff (Momber et al., 2011) further demonstrated the po-
tential for the recovery of material in situ. As such, Reid’s (1913)
hypothetical spaces were more readily modelled and had their
potential proved through recovered finds and geotechnical data.

While the above work has helped to shape our understanding of
the submerged record, continued advances in sea-level recon-
struction techniques, and acquisition of new data, mean that
palaeogeographic models need to be updated to provide the
broader context for this material. In addition, while the issues we
are interested in as archaeologists mesh with those of earth sci-
entists, archaeologists often call for consideration of change at
higher temporal and spatial resolutions. Thus, while Shennan et al.
(2000) and Brooks et al.’s (2011) palaeogeographic models provide
a good sense of change at one thousand and two thousand year
intervals respectively, they are still at odds with archaeology’s
desire (Coles, 1998, 77) to understand rates of change at a more
human scale. As such, this paper moves to a five hundred year
temporal interval and a higher spatial resolution for outputs than
have previously been made available. In addition, it uses the model
outputs to quantify varying rates of change across different zones
within the study area. As such, through the models created here we
seek to establish how the shape of North West Europe changed over
the Holocene, and how variability in the rate of change may have
impacted on people in the past.

In recent years, much archaeological attention has been focused
on events which appear dramatic when viewed at a macro tem-
poral and spatial scale — such as the total loss of Doggerland (Coles,
1998, 1999, 2000; Weninger et al., 2008) or the separation of Britain
from the continent (Tolan-Smith, 2008). In this paper, we also seek
to investigate changes which may appear less dramatic, but were in
fact no less important, across the study zone. In addition, just as
Coles (1998, 77) argued that the North Sea plain needed to be seen
as more than a corridor, so we argue for the need to better un-
derstand the changing qualities of maritime space. The opening up
of channels, the formation of islands and changes in depths of
water along maritime routeways, will have impacted on both
movement over the water and the distribution of ecosystems
within it. This is not a trivial concern for archaeologists interested
in issues of connectivity and social change (Bell and Warren 2013;
Sturt and Van De Noort, 2013; Van de Noort, 2011).

3. Theory and method

As Lambeck et al. (2010, 65) have clearly stated, resolving dif-
ferences in relative sea-level through time is a complicated matter,
requiring consideration of:

“(1) changes in ocean volume, (2) radial displacement of the land
surface by changing load, (3) changes in the gravitational po-
tential as a result of the deformation of the planet and redistri-
bution of mass across its surface, (4) changes in the shape of ocean
basins and, (5) the redistribution of water within these basins”

Researchers have collected empirical evidence for the impact of
these changes for over a hundred years (Reid’s (1913) submerged
forests stand as one coarse grained proxy indicator). More recently
rigorous standards have been set (Shennan, 1982, 54) with regard
to what can be counted as a robust sea level index point (SLIP).
Collection, auditing and analysis of SLIP data has enabled the cre-
ation of high resolution regional relative sea-level curves (Shennan
et al., 2006; Brooks and Edwards, 2006; Smith et al., 2011, 2012) for
Britain and Ireland. As Brooks et al. (2011, 13) note, the only prob-
lem with these records is that they are often confined to the present
coastal margins. Due to this distribution there is remarkably little
direct evidence from submerged areas of the continental shelf
through which to construct RSL curves (see Ward et al., 2006). The
result of this is that for offshore landscapes we hold little robust
evidence for the rate at which submergence occurred.

Glacial Isostatic Adjustment (GIA) models help to move beyond
this problem through simulating the five points listed above,
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permitting the generation of time and area specific models of past
sea-level. The outputs of these simulations can then be calibrated
against the empirical records and refined. GIA models have long
been used to generate palaeogeographic reconstructions at the
shelf scale (Lambeck, 1996; Shennan et al., 2000; Peltier et al., 2002;
Brooks et al., 2011). However, the process is iterative, with new data
constantly being acquired and new calculations for earth mantel

viscosity being developed to refine outputs. When matched with a
topographic surface, these data allow for new simulations of
changing palaeogeography.

The first step in the method adopted here was the creation of a
combined topographic and bathymetric digital elevation model of
present conditions for the area shown in Fig. 1 within ArcGIS 10.1.
This incorporated data from the sources given in Table 1.
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Fig. 1. Map showing the area modelled within this paper, extents and resolution of different contribution datasets and key places mentioned. Map produced in part from Ordnance
Survey Digimap, SeaZone solutions and GEBCO 08 (www.gebco.net) data. ®Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. °Crown Copyright/
SeaZone Solutions. All Rights Reserved. Licence No. 052006.001 31st July 2011. Not to be Used for Navigation. Additional data courtesy of the Channel Coastal Observatory.
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Table 1
Topographic and bathymetric data sources used.

Source Description

X,y resolution

Coordinate system

Vertical datum

Ordnance Survey (UK) Topography for the United Kingdom

SeaZone Ltd. Bathymetry for UK national waters
SeaZone Bathymetry for the Channel Islands
Channel Coastal Observatory Lidar for Isles of Scilly

Topography for the Channel Islands
Topographic and Bathymetric data for

Digimap Guernsey
GEBCO 08 version 20100927,

50 m Ordnance Survey of Newlyn
Great Britain 1936
30m WGS 1984 Chart Datum (Lowest
Astronomical tide)
Vector data converted WGS 1984 Chart Datum (Lowest

to 30 m raster

Astronomical tide)

http://www.gebco.net

the wider study area

1m Ordnance Survey of Newlyn

Great Britain 1936
10 m Guernsey Grid St. Peter Port (Guernsey)
30 arc-seconds WGS 1984 Mean Sea Level (MSL)
(c. 900 m)

The extent of each dataset used can be seen in Fig. 1. Each
dataset was projected into the WGS84 coordinate system, and
corrected to the same vertical datum (mean sea-level) to allow
merging into a single surface. In the case of the SeaZone data, this
required adjustment from Chart Datum (roughly equivalent to
lowest astronomical tide) to mean sea-level. This was achieved
through adjusting bathymetric values in relation to an inverse
distance weighted surface created from the Ordnance Survey’s
Vertical Offshore Reference Framework (VORF) dataset. VORF was
developed by a combined team from the Ordnance Survey, United
Kingdom Hydrographic Office and the British Geological Survey
specifically to help resolve vertical datum issues such as those
present within this project (lliffe et al., 2006).

With data corrected to the same vertical datum, the different
sources could be combined into a single digital elevation model for
the present day. The variable inputs were re-sampled to 30 m x,y
resolution, to match the SeaZone bathymetry. Where this meant
down-sampling the mean value of the highest resolution data was
retained. Where it saw an up-sampling of data no attempt was
made to refine data through interpolation, the cells were resampled
with the existing value retained.

With the topographic surface created, one of the major chal-
lenges facing palaeogeographic reconstruction becomes apparent.
Accounting for the totality of sedimentation or erosion through
time across the study area is near impossible. Here, in order to
demonstrate the potential impact of this factor on reconstructions a

small area of aggraded landscape was remodelled. An isopach was
generated from borehole data (as described by Sturt (2006)) to give
the depth of Holocene sediment for the East Anglian Fenland. This
depth of material was then removed from the digital elevation
model to recreate the pre-inundation early Holocene landsurface of
the basin. The impact of this exercise was the reduction in height of
local topography by a maximum of 24 m along the current coastline
(where surviving deposits are deepest), thinning out to the north,
south and western margins. The end result is the transformation
from a low lying plain to a more pronounced river basin with
greater accommodation space available for inundation or sedi-
mentation (as shown in Fig. 5a—c below). This sample area stands
as an exemplar within the model to help demonstrate the impacts
of geomorphological processes (Holocene aggradation in this
instance) on model outputs.

Data points for the area shown in Fig. 1 were extracted from
Bradley et al.’s (2011) GIA at 500 year intervals, on a 5 km grid.
These points describe difference between present day elevation at a
given location, and the elevation of the earth’s surface in relation to
mean sea-level for the given time slice. As Brooks et al. (2011, 8)
note, this GIA model and associated eustatic sea-level curve (shown
in Fig. 2) has been tightly tested against empirical observations and
shows good conformity; an observation confirmed by Smith et al.’s
(2011) recent review of Holocene sea-level change in Northern
Britain and Ireland. The data points from the GIA were then inter-
polated via an inverse distance weighting (IDW) algorithm in
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Fig. 2. Eustatic sea-level curve utilised within the model. For additional details on its fit with SLIPs and regional records please see Bradley et al. (2011).
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Fig. 3. GIA IDW model output. The value in metres shows the amount of uplift/subsidence that has occurred between 11,000 BP to present day period in relation to MSL.

ARCGIS 10.1 to generate a raster grid at 30 m resolution (shown in
Fig. 3). An IDW interpolation method was chosen due to the even
nature of the exported grid points from the GIA, and the need to
ensure that the highs and lows of the input points were maintained
as maxima and minima values for the final surface. The resulting
raster grids could then be ‘subtracted’ from the modern digital
elevation data to give a model of the computed topography for any
given 500 year time-slice.

In order to move beyond rendering of palaeogeography alone,
the resulting time specific elevation models were reclassified
within ArcGIS 10.1 to allow quantification of the area inundated
between each 500 year time-step (shown in Fig. 4). This was ach-
ieved by giving data in each time slice new values; 2 for anything
below 0 MSL (marine conditions) and 1 for anything above 0. The

reclassified layers were then added together via a raster maths
function. A resulting value of 4 indicated the area was marine in the
last and current time step, a value of 3 indicated inundation had
occurred over the 500 year period for that cell, and 2 a continuation
of dry land conditions.

In addition, to help move beyond generic accounts of total area
lost for the whole continental shelf, the study area was divided into
four sub-areas (Fig. 5); North Sea, English Channel, Western Sea-
ways, and Western Ireland/Atlantic. Data could then be generated
with regard to inundation rates for each zone. Rather than being
arbitrary, the four sub-areas selected relate to major basins and
potential prehistoric interaction zones (Needham, 2009;
Westerdahl, 1995). As such, they allow for consideration of
change at scales commensurate with trends seen in material
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Fig. 4. Map showing the area inundated between 10,000 and 9500 BP. Map produced in part from Ordnance Survey Digimap, SeaZone solutions and GEBCO 08 (www.gebco.net)
data. ®Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. °Crown Copyright/SeaZone Solutions. All Rights Reserved. Licence No. 052006.001 31st
July 2011. Not to be Used for Navigation. Additional data courtesy of the Channel Coastal Observatory.

culture studies, with regard to connectivity and communication
from the Mesolithic onwards.

To help bring discussion down to a human level, each interac-
tion zone was further sub-divided, with separate inundation rate
data generated for island groups present. This provided three scales
of analysis, shelf scale, interaction zone, and island level. The area
inundated per 500 year time step for each region was calculated in
square kilometres. This allowed for quantification of total change
over the 11,000 years, and relative change within each 500 year
window.

Before moving onto detailed discussion of the results it is worth
commenting on the reliability of the models produced. The images
in Fig. 6 are flawed, but remain archaeologically valuable. The flaws

stem from the fact that sedimentation and erosion over the Holo-
cene will have changed the morphology of the seabed and land
surfaces. As such, some of the topographic highs and lows rendered
in these images relate to on-going geomorphological processes,
rather than the specifics of past topography. The impacts of this
should not be underestimated, as demonstrated by the East Anglian
Fenland example. Here, if compared to the Humber or Somerset
levels regions (which underwent similar stories of Holocene
infilling) we see a dramatically different picture of palaeogeo-
graphic change over the simulated period. For the Humber and
Somerset levels the modern coastline is replicated into the past,
for the East Anglian Fens we see an expansion of the North Sea
well inland from the early Holocene onwards. However, while this
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Fig. 5. Map showing the four interaction zones for which inundation rates were calculated. Sites and islands mentioned in the text are also labelled. Map produced in part from
Ordnance Survey Digimap, SeaZone solutions and GEBCO 08 (www.gebco.net) data. ©°Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. ©Crown
Copyright/SeaZone Solutions. All Rights Reserved. Licence No. 052006.001 31st July 2011. Not to be Used for Navigation. Additional data courtesy of the Channel Coastal Observatory.

is a more accurate representation of marine transgression for the
earlier Holocene of the Fenland (as the model is not ‘blocked’ by
later deposits), the model overestimates the marine transgression
from the Bronze Age onwards when deposition of sediment
(partly due to anthropogenic activity (Lewin et al., 2005; Sturt,
2006)) saw progradation within the basin which has not been
accounted for.

Furthermore, the images presented here do not account for
possible changes in tidal range. Work by Uehara et al. (2006) has
illustrated the potential magnitude of impact this may have had,
particularly during the late Pleistocene near the edge of the con-
tinental shelf. However, recent work by Cazenave (2012) indicates
that beyond the southern North Sea basin, where the radical
reconfiguration of land/sea boundaries sees more marked changes
in tidal ranges, for the majority of the area considered here over the
last 8000 years there has been little change in tidal range. Finally,

the resolution of the model at the outer margins, where GEBCO
data was relied on, means that the ability to pick out surviving
bathymetric relief is diminished.

The consequence of these known flaws is that the palaeogeo-
graphic models are broadly representative of past change, but will
constantly need to be refined through empirical observation by
both archaeologists and earth scientists. In addition, more work
needs to be done on attempting to account for sedimentation and
erosion over the study period. That being said, the data presented
here offer an important way forward with regard to quantifying
degrees of change, and attuning our minds to its variable nature.

4. Results

Fig. 6 shows the changing palaeogeography of the study area
from 11,000 BP to the present day at five hundred year intervals.
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Fig. 6. (Parts a, b and c) Palaeogeographic models from 11,000 BP to present (kml versions available online). Map produced in part from Ordnance Survey Digimap, SeaZone
solutions and GEBCO 08 (www.gebco.net) data. ©Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. ©Crown Copyright/SeaZone Solutions. All
Rights Reserved. Licence No. 052006.001 31st July 2011. Not to be Used for Navigation. Additional data courtesy of the Channel Coastal Observatory.
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Fig. 6. (continued).

The same data are available to download as interactive KML files
from the journal website and from the UK’s Archaeology Data
Service (http://dx.doi.org/doi:10.5284/1016098) allowing a higher
resolution and interactive view. At the large scale shown in Fig. 5 it
is possible to pick out the broader story of change, from connection

to the continent through to the separation of Britain and the loss of
what Coles (1998) termed Doggerland (the land associated with the
topographic high of the Dogger Bank).

Fig. 7 shows the areainundated in square kilometres per 500 year
window for each of the four interaction zones. The North Sea zone
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Fig. 6. (continued).

with its shallow topography and bathymetry sees the submergence
of an area twice that of all the other three regions added together
(127,422 vs. 59,149 km?). This demonstrates the now well noted
(Coles, 1998, 1999, 2000; Leary, 2009) large-scale nature of change
that occurred over the Holocene for this region. However, the total
area inundated, and the substantial changes of the Dogger bank
region, are only part of a broader story and have the potential to shift
focus away from considering the variable impact of change along
different coastlines. Fig. 8 shows a chart for each of the interaction
zones, normalised against total area inundated over the 11,000 year
period. In addition, the impact on smaller island regions within each
zone is drawn out for comparison within the same figure.

Within Fig. 8 it begins to become possible to pick out how local
topography impacts on regional patterns. Within the English
Channel, the Channel Islands as a whole plot a different story to the
wider basin, but then when considered in greater detail the island of
Guernsey experiences a further difference with regard to inundation
history. Similarly the Isles of Scilly undergo a more complex story
of change, with both significant alterations in palaeogeography
at c. 9000—8000 BP and then again at around 2000 BP. Orkney
also demonstrates a regional variant on a wider trend, with more
pronounced loss between 8000 and 7000 BP.

For areas that were distinct as island groups by 11000 BP it is
possible to further quantify the variable nature of change, with

calculation of the percentage of total land area lost per 500 year
window (Fig. 9). Here the regional nature of change becomes more
strongly apparent. Again, the Isles of Scilly emerge as undergoing
large scale change at multiple points in time, with over 10% of total
land area lost each 500 year period between 8500 and 7000 BP,
3500—2000 and at 1500—1000 BP.

5. Discussion
5.1. 11,000—8000 BP

As Figs. 6—8 make clear, there is a considerable transformation
of the geography of North West Europe over this period. The Dover
Straits are breached and Britain separates from the continent at
some point between 8000 and 7500 BP. As Brooks et al. (2011, 11)
note, this date is confirmed by coastal peats from along the south
coast of England (Gupta et al., 2004; Massey et al., 2008) and France
(Frouin et al., 2007). Within the English Channel, the Channel
Islands of Guernsey and Herm form a single island, while Jersey and
potentially Alderney remain joined to the French coast. Along the
western seaways Scilly stands as a single island, as too does Orkney
to the North. The Outer Hebrides are considerably larger than they
are now, with a low lying coastal plain extending out to the West of
the Uists. The sea itself is radically transformed over this period,
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Fig. 7. Graph showing the area in square kilometres inundated over each 500 year period.

principally through the breaching of the Dover straits. A high flow
of water over a relatively shallow seabed would have created
difficult seafaring conditions, but potentially provided good fishing
through the movement of nutrients from deeper to shallow waters.

The models and charts presented here to an extent smooth out
some of the changes that will have occurred. Hijma and Cohen
(2010) have documented how the sudden release of fresh water
as part of the 8.2 kya event saw a rapid vertical jump in sea-level
along parts of the Dutch coast. Similarly, Weninger et al. (2008)
have argued that the Storegga slide tsunami at c. 8100 4+ 1000 BP
flooded Doggerland in a catastrophic finale to an otherwise slower
process. However, while both of these instances will have had
measurable impacts at different points in the study area, as Kiden
et al. (2002) note, the realities of sea-level change can differ on
small (sub 50 km) levels. Thus, while it is possible that both of these
events played a part in the final submergence of Doggerland, we
can expect that some areas will have seen dramatic impacts, while
others responded more slowly due to localised geomorphology or
shoreline ecology.

Coles (1998, 1999, 2000) and Leary (2009, 2011) both contend
that the inundation of Doggerland and the surrounding North Sea
Plain will have had a significant impact on Mesolithic populations,
potentially forcing a population movement. The point is well made,
but also applies beyond the topographic high of the Dogger bank.
For those living along the coastal margins of the North Sea plain, in
the Channel Island of Guernsey and the Isle of Man, it would appear
from the rates described in Fig. 8 that the degree of change may
have been perceptible at the level of multi-generational cultural
memory (Assmann, 2011) and perhaps even at a generational level,
with nearly twenty percent of total land area lost over different five
hundred year periods.

Tolan-Smith (2008, 134) cites this rapid rate of change and
the separation of Britain from the continent as “a major factor
influencing the demographic development of Britain during the
Early Mesolithic”. However, we need to think carefully about the
concept of separation in this context. The creation of two separate
landmasses via the breaching of the Dover strait may look dramatic
in Fig. 6, but does that map onto what we know of Mesolithic

lifeways in this period? Would a difficult stretch of water create an
insurmountable barrier?

Tolan-Smith (2008, 151) notes that at this point there is clear
evidence for Mesolithic seafaring, with Ireland being occupied
along with the Isle of Man, Rhum, the Hebridean Archipelago and
Howick on the East coast of England. Thus, as Warren (2005) and
Garrow and Sturt (2011) have argued, there is ample evidence for a
strong seafaring tradition in the Mesolithic. The colonisation of
Ireland and the islands along the western shores of Scotland
required navigation of difficult marine environments. As such, the
separation of Britain from the continent is unlikely to have pre-
vented communication, but rather reconfigured it. Thus, as much
as we may want to view the visible point of separation as a fulcrum
on which social relations pivoted, the truth may lie some way
further off.

5.2. 8000—6000 BP

Within five hundred years of the opening of the Dover Straits,
the final vestiges of Doggerland are submerged. Between 7000 and
6500 BP Jersey becomes separated from mainland Europe, with
possible large inter-tidal islands remaining. At the same time, Scilly
begins to fragment, splitting into three main islands while Orkney
moves closer to its current configuration, with smaller islands (such
as Papa Westray) breaking away from larger landmasses. On
mainland Britain, today’s East Anglian Fenland has become a true
extension of the newly formed North Sea, stretching far inland of
the present coastline. Similarly, the Somerset and Humber Levels
would have been undergoing marine transgression. As such, our
understanding of terrestrial space also needs to be carefully
considered; with reworking of estuarine areas and the expansion of
former wetlands into open areas of sea, all serving to shape modes
of transport and connectivity across the study area.

5.3. 6000—4000 BP

The Isles of Scilly have now formed into four distinct islands and
Jersey is well separated from the mainland. The extended coastal
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Fig. 8. Graphs showing the percentage of total area inundated over the 11,000 years modelled for each of the interaction zones.

plain which surrounded the Outer Hebrides is significantly dimin-
ished in size and the islands are approaching their present
configuration. The local topography of Guernsey and Herm mean
that they experience an increase in the rate of change over this
period, with a larger relative area being submerged than in the
previous two millennia. Similarly the rate of change increases
within Scilly, but still lies below that seen in the earlier Holocene.

At a coarse grain viewing, the models in Fig. 6 indicate that the
majority of the total change to occur has now taken place. However,

whilst true at the macro scale, at the regional level the specifics of
local bathymetry and topography mean that coastline reconfigu-
ration and seaway behaviour is still transforming. As water depths
change previous shoals and shallows submerge and fish behaviour
will have altered accordingly. The impacts of these changes are still
most profoundly felt within the North Sea and English Channel
regions. The cliff lined coast of Ireland and the rocky shores of
Western Britain reduce the overall amount of change experienced
along those coastlines. As such, a consistent difference is
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Fig. 9. Graph showing the percentage of available land area lost over each 500 year period for given island groups.

discernible between a persistent Irish and Atlantic facade and the
more changeable low lying British and continental coastlines.
However, within this space we still have to consider the nature of
the newly submerged regions and their behaviour as seaways. The
shallowly shelving land off North West England would have pro-
vided a potentially complex and dangerous mix of shallowly
shelving, rapidly changing beaches and shoals. Thus although now
maritime in nature, it (and other regions like it) may have become
hard to navigate. Better understanding the complexities of these
new maritime environments may well help us to unpick the vari-
able timing and processes via which Neolithic practices become
established around the British Isles and Ireland.

5.4. 4000—-500 BP

Although the overall rate of change has slowed, exceptions still
exist. The Isles of Scilly undergo profound change over this period,
with the low-lying central region of the previous eras largest island
submerging. The result is the transformation from a single large
island with three attendant smaller islands, into the cluster of five
major islands and c. 140 rocky islets that we see today. As Fig. 8
makes clear, the total percentage area of land lost per 500 years
is considerable, marking this out as socially perceptible change,
possibly within individuals’ lifetimes. It also makes clear, as noted
by Mulville (2007), that the Isles represent a significant archaeo-
logical resource for those interested in Holocene records of sea-
level change and social impact. With shallow seas and observable
submerged structures and peats, the rare opportunity exists to gain
direct observations of changing human behaviour from submerged
archaeological sites.

6. Conclusions

In this paper we have sought to achieve two goals: to present
new palaeogeographic models, and to consider those models
within their broader context. Examined on their own the images in
Fig. 6 tell a story of large-scale change, of loss of land and creation of
modern geographical boundaries. It is all too easy to transform
these images into a story of catastrophe, of separation and com-
partmentalisation. Instead, close examination of both the models

produced and the archaeological record reveals a more complicated
picture of regional diversity and variable impact.

The archaeological narrative of Holocene sea-level change in
North West Europe should not be limited to the loss of Doggerland,
but benefits from comparison to the broader context. As Warren
(2005), Tolan-Smith (2008) and Garrow and Sturt (2011) have
noted, the populations who inhabited these landscapes were well
able to navigate its changing geography and capitalise on the
products of expanded marine areas. This is not to trivialise the
impact that loss of land may have had on past populations, or to
deny the possibility (indeed likelihood) that at times catastrophic
changes did occur at a regional level, but to place it within a more
reasoned framework. It is only through doing this that we can
better proceed with understanding the record we currently hold. It
is with this in mind that we hope the models made available here
are widely used, modified, critiqued, updated and shared in an
open format to help drive research in this area forward.
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